论文标题

FBST:用于通过电子价值测试其替代方案的尖锐无效假设的完整贝叶斯显着性测试的R包装

fbst: An R package for the Full Bayesian Significance Test for testing a sharp null hypothesis against its alternative via the e-value

论文作者

Kelter, Riko

论文摘要

假设检验是心理学和认知科学的中心统计方法。但是,无效假设显着性检验(NHST)和p值的问题已经广泛争议,但很少有吸引人的选择。本文介绍了FBST R软件包,该软件包实现了完整的贝叶斯显着性测试(FBST),以测试通过电子价值对其替代方案进行尖锐的无效假设。 FBST的统计理论已由Pereira等人引入。 (1999年)二十多年前,从那时起,FBST已证明是NHST和P值的贝叶斯替代方案,具有理论和实用性高度吸引人的特性。 FBST软件包中提供的算法适用于任何贝叶斯模型,只要可以至少从数值上获得后验分布即可。包装的核心功能提供了针对零假设的贝叶斯证据,即电子价值。此外,可以计算基于渐近参数的P值,并可以产生丰富的可视化和对结果的解释。本文给出了认知科学中经常使用的统计程序的三个示例,这些示例演示了如何使用FBST软件包在实践中应用FBST。基于FBST在统计科学方面的成功,FBST软件包应该对心理学和认知科学领域的广泛研究人员感兴趣,并希望鼓励研究人员将FBST视为对尖锐无效假设进行假设检验的可能选择。

Hypothesis testing is a central statistical method in psychology and the cognitive sciences. However, the problems of null hypothesis significance testing (NHST) and p-values have been debated widely, but few attractive alternatives exist. This article introduces the fbst R package, which implements the Full Bayesian Significance Test (FBST) to test a sharp null hypothesis against its alternative via the e-value. The statistical theory of the FBST has been introduced by Pereira et al. (1999) more than two decades ago and since then, the FBST has shown to be a Bayesian alternative to NHST and p-values with both theoretical and practical highly appealing properties. The algorithm provided in the fbst package is applicable to any Bayesian model as long as the posterior distribution can be obtained at least numerically. The core function of the package provides the Bayesian evidence against the null hypothesis, the e-value. Additionally, p-values based on asymptotic arguments can be computed and rich visualisations for communication and interpretation of the results can be produced. Three examples of frequently used statistical procedures in the cognitive sciences are given in this paper which demonstrate how to apply the FBST in practice using the fbst package. Based on the success of the FBST in statistical science, the fbst package should be of interest to a broad range of researchers in psychology and the cognitive sciences and hopefully will encourage researchers to consider the FBST as a possible alternative when conducting hypothesis tests of a sharp null hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源