论文标题
阈值图的特征值的猜想
A conjecture of eigenvalues of threshold graphs
论文作者
论文摘要
让$ a_n $是$n。$的反规则图,有人认为,在$ n $ vertices上的所有阈值图中,$ a_n $具有最小的正征值eigenvalue,而最大的特征值小于$ -1。最近,在\ cite {cesar2}中,对{cesar2}进行了更大的疑问,并确定了一定的一种定位方法。在本文中,我们处理这些案件并确认猜想的存在。
Let $A_n$ be the anti-regular graph of order $n.$ It was conjectured that among all threshold graphs on $n$ vertices, $A_n$ has the smallest positive eigenvalue and the largest eigenvalue less than $-1.$ Recently, in \cite{Cesar2} was given partial results for this conjecture and identified the critical cases where a more refined method is needed. In this paper, we deal with these cases and confirm that conjecture holds.