论文标题

阈值图的特征值的猜想

A conjecture of eigenvalues of threshold graphs

论文作者

Tura, Fernando

论文摘要

让$ a_n $是$n。$的反规则图,有人认为,在$ n $ vertices上的所有阈值图中,$ a_n $具有最小的正征值eigenvalue,而最大的特征值小于$ -1。最近,在\ cite {cesar2}中,对{cesar2}进行了更大的疑问,并确定了一定的一种定位方法。在本文中,我们处理这些案件并确认猜想的存在。

Let $A_n$ be the anti-regular graph of order $n.$ It was conjectured that among all threshold graphs on $n$ vertices, $A_n$ has the smallest positive eigenvalue and the largest eigenvalue less than $-1.$ Recently, in \cite{Cesar2} was given partial results for this conjecture and identified the critical cases where a more refined method is needed. In this paper, we deal with these cases and confirm that conjecture holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源