论文标题
统一$ l^2 $ -decupling in $ \ mathbb r^2 $ for polyenmials
Uniform $l^2$-decoupling in $\mathbb R^2$ for Polynomials
论文作者
论文摘要
对于每个正整数$ d $,我们证明了均匀的$ l^2 $ - 对不平等的不平等,以收集所有学位的所有多项式阶段,最多是$ d $。我们的结果与\ cite {MR4078083}密切相关,但是我们使用了由每个单个相函数的几何形状确定的不同分区。
For each positive integer $d$, we prove a uniform $l^2$-decoupling inequality for the collection of all polynomials phases of degree at most $d$. Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function.