论文标题

通过好奇的身份证明了某些猜想的超几何超级优势

Proof of some conjectural hypergeometric supercongruences via curious identities

论文作者

Wang, Chen, Sun, Zhi-Wei

论文摘要

在本文中,我们证明了Z.-W。猜想的几个超级企业。十年前的太阳通过某些奇怪的高几幅身份。例如,对于任何prime $ p> 3 $,我们表明$$ \ sum_ {k = 0}^{p-1} \ frac {\ binom {\ binom {4K} {2K+1} \ binom {2k} k} k} k} \ sum_ {k = 0}^{p-1} \ frac {\ binom {2k} {k} {k} \ binom {3K} {k}} {24^k} \ equiv \ equiv \ equiv \ okent {cases} case} \ binom {case} &\ mbox {if} \ p \ equiv1 \ pmod {3},\\ p/\ binom {(2p+2)/3} {(p+1)/3} \ pmod {p^2} {p^2} \&\ mbox {if} \ p \ p \ p \ equiv2 $ equ}这样的类型。

In this paper, we prove several supercongruences conjectured by Z.-W. Sun ten years ago via certain strange hypergeometric identities. For example, for any prime $p>3$, we show that $$\sum_{k=0}^{p-1}\frac{\binom{4k}{2k+1}\binom{2k}k}{48^k}\equiv0\pmod{p^2},$$ and $$ \sum_{k=0}^{p-1}\frac{\binom{2k}{k}\binom{3k}{k}}{24^k}\equiv\begin{cases}\binom{(2p-2)/3}{(p-1)/3}\pmod{p^2}\ &\mbox{if}\ p\equiv1\pmod{3},\\ p/\binom{(2p+2)/3}{(p+1)/3}\pmod{p^2}\ &\mbox{if}\ p\equiv2\pmod{3}.\end{cases} $$ We also obtain some other results of such types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源