论文标题
Szczarba的Twisting Cochain和Eilenberg-Zilber地图
Szczarba's twisting cochain and the Eilenberg-Zilber maps
论文作者
论文摘要
我们表明,Szczarba的扭曲笛卡尔产品的扭曲科链基本与Shih建造的产品基本相同。更确切地说,如果一个人使用经典的Eilenberg-Maclane同型同型来获得Eilenberg-Zilber收缩,则可以通过基本的扰动引理获得Szczarba的扭曲Cochain。在此过程中,我们证明了涉及这些同质性的几种新身份。
We show that Szczarba's twisting cochain for a twisted Cartesian product is essentially the same as the one constructed by Shih. More precisely, Szczarba's twisting cochain can be obtained via the basic perturbation lemma if one uses a 'reversed' version of the classical Eilenberg-MacLane homotopy for the Eilenberg-Zilber contraction. Along the way we prove several new identities involving these homotopies.