论文标题

具有不均匀振荡系数的波方程的均匀化

Homogenization of the wave equation with non-uniformly oscillating coefficients

论文作者

Shahraki, Danial P., Guzina, Bojan B.

论文摘要

我们工作的重点是分散的二阶有效模型,描述了具有周期性微观结构的异质(例如〜功能分级)介质中的低频波动运动。对于这类准周期介质变化,我们在$ \ mathbb {r}^d $,$ d \ geqslant 1 $中追求标量波方程的同质化。当$ d = 1 $或$ d = 2 $时,此模型问题与弹性固体中(反平面)剪切波的描述直接相关。通过将显微镜介质波动的长度尺寸作为扰动参数,我们通过四阶微分方程(具有平均变化的系数)在介质中综合均值运动的均匀波动,在介质中综合了平均的低频行为,在该介质中,微观杂质的效果是由微观杂质的效果,其效果是通过该细胞功能的效果。为了证明我们的分析与解决边界价值问题的相关性(被认为是大多数均质研究的最终目标),我们还发展有效的边界条件,直至渐近近似的二阶(1D)剪切波运动的第二顺序,适用于与周期性微观结构的宏观异构固体中。我们通过考虑(i)(i)低频波散,(ii)在有限域中传播的剪切波和(iii)全场均质化描述的剪切波的均匀描述,以数值为1D说明分析。与(i)相反,在(i)的总模型似乎很好地描述了(ii)和(iii)中的结果表明,高阶校正可能在近似于准周期介质中的实际波形可能具有的关键作用。

The focus of our work is dispersive, second-order effective model describing the low-frequency wave motion in heterogeneous (e.g.~functionally-graded) media endowed with periodic microstructure. For this class of quasi-periodic medium variations, we pursue homogenization of the scalar wave equation in $\mathbb{R}^d$, $d\geqslant 1$ within the framework of multiple scales expansion. When either $d=1$ or $d=2$, this model problem bears direct relevance to the description of (anti-plane) shear waves in elastic solids. By adopting the lengthscale of microscopic medium fluctuations as the perturbation parameter, we synthesize the germane low-frequency behavior via a fourth-order differential equation (with smoothly varying coefficients) governing the mean wave motion in the medium, where the effect of microscopic heterogeneities is upscaled by way of the so-called cell functions. In an effort to demonstrate the relevance of our analysis toward solving boundary value problems (deemed to be the ultimate goal of most homogenization studies), we also develop effective boundary conditions, up to the second order of asymptotic approximation, applicable to one-dimensional (1D) shear wave motion in a macroscopically heterogeneous solid with periodic microstructure. We illustrate the analysis numerically in 1D by considering (i) low-frequency wave dispersion, (ii) mean-field homogenized description of the shear waves propagating in a finite domain, and (iii) full-field homogenized description thereof. In contrast to (i) where the overall wave dispersion appears to be fairly well described by the leading-order model, the results in (ii) and (iii) demonstrate the critical role that higher-order corrections may have in approximating the actual waveforms in quasi-periodic media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源