论文标题
具有高斯水槽的扁平电势的扩散概率的分析解决方案
Analytical solution of diffusion probability for a flat potential with a gaussian sink
论文作者
论文摘要
我们提供了一种非常简单的方法,可以在存在高斯水槽功能的情况下在存在扁平电势上进行扩散运动的问题找到精确的分析解决方案。扩散过程是通过使用一维Smoluchowski方程来建模的。我们的方法在拉普拉斯结构域中提供了解决方案,该域用于为时间平均速率常数得出分析表达式。我们的解决方案可用于分析涉及扩散反应系统的几个相关问题。
We give a very simple method for finding the exact analytical solution for the problem of a particle undergoing diffusive motion on a flat potential in the presence of a gaussian sink function. The diffusion process is modelled by using one dimensional Smoluchowski equation. Our method provides solution in Laplace domain, which is used to derive an analytical expression for time average rate constant. Our solution can be used to analyze several related problems involving diffusion-reaction systems.