论文标题
满足中心极限定理的平滑系统的统计特性的灵活性
Flexibility of statistical properties for smooth systems satisfying the central limit theorem
论文作者
论文摘要
在本文中,我们展示了满足中心极限定理(CLT)的新型平滑系统,并且具有以下属性之一: (1)零熵; (2)弱但不是强烈的混合; (3)(多项式)混合,而不是$ k $; (4)$ k $但不是伯诺利; (5)非Bernoulli并以任意快速多项式速率混合。 我们还举了一个满足CLT的系统的示例,其中正常化序列定期使用索引$ 1 $变化。
In this paper we exhibit new classes of smooth systems which satisfy the Central Limit Theorem (CLT) and have (at least) one of the following properties: (1) zero entropy; (2) weak but not strong mixing; (3) (polynomially) mixing but not $K$; (4) $K$ but not Bernoulli; (5) non Bernoulli and mixing at arbitrary fast polynomial rate. We also give an example of a system satisfying the CLT where the normalizing sequence is regularly varying with index $1$.