论文标题

DiMagnet上悬浮石墨谐振器的刚体动力学

Rigid body dynamics of diamagnetically levitating graphite resonators

论文作者

Chen, Xianfeng, Keşkekler, Ata, Alijani, Farbod, Steeneken, Peter G.

论文摘要

磁磁悬浮是一种实现共振传感器和能量收获器的有前途的技术,因为它在零功率下从环境中提供了热和机械隔离。为了促进磁性悬浮的谐振器的应用,在磁性和重力场的存在下表征它们的动力学很重要。在这里,我们通过实验性地攻击并测量二氧化石墨板的刚体模式。我们通过数值计算磁场,并确定磁力对悬浮板的共振频率的影响。通过分析阻尼机制,我们得出结论,涡流阻尼主导了MM大小的板中的耗散。我们使用有限元模拟对涡流阻尼进行建模,并与实验结果达成密切的一致性。我们还研究了diamagnet悬浮板的尺寸依赖性Q因子(QS),并表明,从理论上可以通过减少diamagnetic谐波的大小来实现QS超过1亿,从而使这些感兴趣的系统成为下一代低Noise resonants resenant传感器和振动器的这些感兴趣系统。

Diamagnetic levitation is a promising technique for realizing resonant sensors and energy harvesters, since it offers thermal and mechanical isolation from the environment at zero power. To advance the application of diamagnetically levitating resonators, it is important to characterize their dynamics in the presence of both magnetic and gravitational fields. Here we experimentally actuate and measure rigid body modes of a diamagnetically levitating graphite plate. We numerically calculate the magnetic field and determine the influence of magnetic force on the resonance frequencies of the levitating plate. By analyzing damping mechanisms, we conclude that eddy current damping dominates dissipation in mm-sized plates. We use finite element simulations to model eddy current damping and find close agreement with experimental results. We also study the size-dependent Q-factors (Qs) of diamagnetically levitating plates and show that Qs above 100 million are theoretically attainable by reducing the size of the diamagnetic resonator down to microscale, making these systems of interest for next generation low-noise resonant sensors and oscillators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源