论文标题

转移操作员的紧凑性和ruelle zeta函数的光谱表示超连续函数

Compactness of Transfer Operators and Spectral Representation of Ruelle Zeta Functions for Super-continuous Functions

论文作者

Nakagawa, Katsukuni

论文摘要

考虑了单方面拓扑马尔可夫移位的超连续功能的转移操作员和ruelle zeta函数。对于每个超连续函数,我们构建了一个Banach空间,相关的传输操作员紧凑。使用此BANACH空间,我们为特定类别的超连续函数建立了Ruelle Zeta函数的痕量公式和光谱表示。我们的结果包括特殊情况,是局部恒定函数类别的经典痕量公式和光谱表示。

Transfer operators and Ruelle zeta functions for super-continuous functions on one-sided topological Markov shifts are considered. For every super-continuous function, we construct a Banach space on which the associated transfer operator is compact. Using this Banach space, we establish the trace formula and spectral representation of Ruelle zeta functions for a certain class of super-continuous functions. Our results include, as a special case, the classical trace formula and spectral representation for the class of locally constant functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源