论文标题
COX回归分析,用于扭曲的协变量具有未知的失真函数
Cox regression analysis for distorted covariates with an unknown distortion function
论文作者
论文摘要
我们研究了审查的生存数据的推断,其中某些协变量被以多种形式观察到的混杂变量的某些未知功能扭曲。医学研究中这种数据的示例是使患者体重指数(BMI),体重或年龄标准化一些重要的暴露变量的常见实践。这种现象在环境研究中也经常出现,在环境研究中,环境测量用于归一化,以及在基因组研究中需要将图书馆大小进行标准化以进行下一代测序数据。我们提出了一种新的协变量调整的COX比例危害回归模型,并利用内核平滑方法估计扭曲函数,然后采用估计的最大似然方法来得出回归参数的估计器。我们建立了所提出的估计量的大样本特性。广泛的模拟研究表明,所提出的估计器在纠正失真引起的偏差方面表现良好。来自国家Wilms肿瘤研究(NWTS)的真实数据集用于说明所提出的方法。
We study inference for censored survival data where some covariates are distorted by some unknown functions of an observable confounding variable in a multiplicative form. Example of this kind of data in medical studies is the common practice to normalizing some important observed exposure variables by patients' body mass index (BMI), weight or age. Such phenomenon also appears frequently in environmental studies where ambient measure is used for normalization, and in genomic studies where library size needs to be normalized for next generation sequencing data. We propose a new covariate-adjusted Cox proportional hazards regression model and utilize the kernel smoothing method to estimate the distorting function, then employ an estimated maximum likelihood method to derive estimator for the regression parameters. We establish the large sample properties of the proposed estimator. Extensive simulation studies demonstrate that the proposed estimator performs well in correcting the bias arising from distortion. A real data set from the National Wilms' Tumor Study (NWTS) is used to illustrate the proposed approach.