论文标题
用于快速磁共振成像中K空间数据插值的自适应卷积神经网络
Adaptive convolutional neural networks for k-space data interpolation in fast magnetic resonance imaging
论文作者
论文摘要
K空间中的深度学习表现出了从快速磁共振成像(MRI)中的不足采样K空间数据进行图像重建的巨大潜力。但是,现有的基于深度学习的图像重建方法通常将重量共享卷积神经网络(CNN)应用于K空间数据,而无需考虑K空间数据的空间频率属性,从而导致对图像重建模型的学习无效。此外,在现有的深度学习方法中通常忽略了空间相邻切片的互补信息。为了克服此类局限性,我们开发了一种深度学习算法,称为K空间数据插值(ACNN-K-Space)的适应性卷积神经网络(ACNN-K-Space),该网络采用残留的编码器编码器网络体系结构,以插入较小的K-Space数据插入空间上的slies sline sline sline sline sline sline cole slique cole sublie cole niguly cole n os Multi-col space,以及是否将其与kliles cole-space相同。自我发挥层增强了网络,以适应不同的空间频率和频道的K空间数据。我们已经在两个公共数据集上评估了我们的方法,并将其与现有方法进行了比较。消融研究和实验结果表明,我们的方法有效地重建了从不足的K空间数据中重建图像,并且与当前最新技术相比,图像重建性能明显更好。
Deep learning in k-space has demonstrated great potential for image reconstruction from undersampled k-space data in fast magnetic resonance imaging (MRI). However, existing deep learning-based image reconstruction methods typically apply weight-sharing convolutional neural networks (CNNs) to k-space data without taking into consideration the k-space data's spatial frequency properties, leading to ineffective learning of the image reconstruction models. Moreover, complementary information of spatially adjacent slices is often ignored in existing deep learning methods. To overcome such limitations, we develop a deep learning algorithm, referred to as adaptive convolutional neural networks for k-space data interpolation (ACNN-k-Space), which adopts a residual Encoder-Decoder network architecture to interpolate the undersampled k-space data by integrating spatially contiguous slices as multi-channel input, along with k-space data from multiple coils if available. The network is enhanced by self-attention layers to adaptively focus on k-space data at different spatial frequencies and channels. We have evaluated our method on two public datasets and compared it with state-of-the-art existing methods. Ablation studies and experimental results demonstrate that our method effectively reconstructs images from undersampled k-space data and achieves significantly better image reconstruction performance than current state-of-the-art techniques.