论文标题

半监督的深度学习,用于高维不确定性量化

Semi-supervised deep learning for high-dimensional uncertainty quantification

论文作者

Wang, Zequn, Li, Mingyang

论文摘要

常规的不确定性定量方法通常缺乏由于维度的诅咒而处理高维问题的能力。本文提出了一个半监督的学习框架,用于降低维度和可靠性分析。首先采用自动编码器将高维空间映射到低维的潜在空间中,该空间包含可区分的故障表面。然后,使用深层进发神经网络(DFN)来学习映射关系并重建潜在空间,而高斯过程(GP)建模技术用于构建转换极限状态函数的替代模型。在DFN的训练过程中,通过半监督学习来最大程度地减少实际和重建潜在空间之间的差异,以确保准确性。标记和未标记的样品都用于定义DFN的损耗函数。采用进化算法来训练DFN,然后根据提议的框架使用蒙特卡洛模拟方法进行不确定性量化和可靠性分析。通过数学示例证明了有效性。

Conventional uncertainty quantification methods usually lacks the capability of dealing with high-dimensional problems due to the curse of dimensionality. This paper presents a semi-supervised learning framework for dimension reduction and reliability analysis. An autoencoder is first adopted for mapping the high-dimensional space into a low-dimensional latent space, which contains a distinguishable failure surface. Then a deep feedforward neural network (DFN) is utilized to learn the mapping relationship and reconstruct the latent space, while the Gaussian process (GP) modeling technique is used to build the surrogate model of the transformed limit state function. During the training process of the DFN, the discrepancy between the actual and reconstructed latent space is minimized through semi-supervised learning for ensuring the accuracy. Both labeled and unlabeled samples are utilized for defining the loss function of the DFN. Evolutionary algorithm is adopted to train the DFN, then the Monte Carlo simulation method is used for uncertainty quantification and reliability analysis based on the proposed framework. The effectiveness is demonstrated through a mathematical example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源