论文标题
高度稀释的气流通过非等温平面微通道
Highly Dilute Gas Flows Through A Non-Isothermal Planar Micro-Channel
论文作者
论文摘要
本文报告了关于通过微通道的游离分子气流的理论和数值研究。都考虑了扩散和镜面反射通道表面。采用煤气方法来开发表面和流场特性的分析解决方案。至关重要的步骤包括构建板板表面和流场内部点的速度分布函数(VDF),然后在相关速度阶段完成集成。对于扩散的反射表面,VDF与两个出口和板温度的密度和温度有关。对于具有镜面反射的表面,板表面和流场内的VDF是相同的,并且与表面温度比和几何纵横比无关。基于VDF和速度阶段,获得表面特性系数(例如C_P,C_F和C_Q)和Flow Field属性(例如,密度,速度组件和温度)。对于扩散反射性的表面情景,可以近似质量流量,结果包括四个非二维参数:纵横比,密度比和两个温度比。对于透明的反射表面情景,表面和流场特性到处都是均匀的,通道纵横比和板温度没有任何影响。使用直接模拟蒙特卡洛(DSMC)方法进行粒子模拟,并基本相同的结果验证了理论工作。这项工作是启发式的,可用于研究不太稀有的微通道气体流,例如,用于热蒸腾流的帮助实验测量设计。
This paper reports theoretical and numerical investigations on free molecular gas flows through micro-channels. Both diffusely and specularly reflective channel surfaces are considered. Gaskinetic methods are adopted to develop the analytical solutions for surface and flowfield properties. The crucial steps include constructing the velocity distribution functions (VDFs) for points at the plate surfaces and inside flowfield, and then completing the integration over the related velocity phases. For diffusely reflective surfaces, the VDFs are related to the densities and temperatures at the two exits and the plate temperatures. For surfaces with specular reflections, the VDFs at the plate surface and inside the flowfield are identical, and independent of the surface temperature ratio and the geometric aspect ratio. Based on the VDFs and velocity phases, surface property coefficients (e.g., C_p, C_f, and C_q) and flowfield properties (e.g., density, velocity components, and temperature) are obtained. For the diffusely reflective surface scenario, the mass flow rate can be approximated and the results include four non-dimensional parameters: the aspect ratio, the density ratio, and two temperature ratios. For specularly reflective surface scenario, the surface and flowfield properties are uniform everywhere, the channel aspect ratio and plate temperatures do not have any influence. Particle simulations with the direct simulation Monte Carlo (DSMC) method are performed, and essentially identical results validate the theoretical work. This work is heuristic and can be used to investigate less rarefied micro-channel gaseous flows, for example, aid experimental measurement design for thermal transpiration flows.