论文标题

来自面部视频的心率估算用于学生评估:EDBB的实验

Heart Rate Estimation from Face Videos for Student Assessment: Experiments on edBB

论文作者

Hernandez-Ortega, Javier, Daza, Roberto, Morales, Aythami, Fierrez, Julian, Tolosana, Ruben

论文摘要

在这项研究中,我们估计了面部视频的心率进行学生评估。这些信息对于随着时间的推移跟踪其状态并估算其他数据,例如他们的注意力水平或作弊尝试可能引起的压力。在本研究中考虑了最近的EDBBPlat是一个远程教育的学生行为建模平台1。该平台允许从一组传感器中捕获几个信号,这些传感器捕获了生物识别和行为数据:RGB和近红外摄像机,麦克风,脑电带,鼠标,智能手表和键盘等。在这项研究的实验框架中,我们专注于用于采用远程照相学技术的心率估计的RGB和近红外视频序列。这些实验包括来自25名不同学生的行为和生理数据,这些数据完成了与电子学习有关的一系列任务。我们提出的面部心率估计方法与智能手表提供的心率进行了比较,这为其在电子学习应用程序中的未来部署取得了非常有希望的结果。

In this study we estimate the heart rate from face videos for student assessment. This information could be very valuable to track their status along time and also to estimate other data such as their attention level or the presence of stress that may be caused by cheating attempts. The recent edBBplat, a platform for student behavior modelling in remote education, is considered in this study1. This platform permits to capture several signals from a set of sensors that capture biometric and behavioral data: RGB and near infrared cameras, microphone, EEG band, mouse, smartwatch, and keyboard, among others. In the experimental framework of this study, we focus on the RGB and near-infrared video sequences for performing heart rate estimation applying remote photoplethysmography techniques. The experiments include behavioral and physiological data from 25 different students completing a collection of tasks related to e-learning. Our proposed face heart rate estimation approach is compared with the heart rate provided by the smartwatch, achieving very promising results for its future deployment in e-learning applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源