论文标题

过度确定和不确定的通用中心单纯形梯度的误差范围

Error bounds for overdetermined and underdetermined generalized centred simplex gradients

论文作者

Hare, Warren, Jarry--Bolduc, Gabriel, Planiden, Chayne

论文摘要

使用Moore-Penrose Pseudoinverse,这项工作概括了称为中心单纯梯度的梯度近似技术,以允许包含任意数量的样品集。这种近似技术称为\ emph {广义中心的单纯形梯度}。我们开发误差界限,并在全级条件下表明误差界的顺序$ o(δ^2)$,其中$δ$是所使用的点样品集的半径。我们为通用中心的单纯形梯度建立​​了微积分规则,引入了基于微积分的概括中心的单纯形梯度,并确认这种新方法的错误界限也是$ O(δ^2)$的顺序。我们提供了几个示例,以说明这些新方法的结果和一些好处。

Using the Moore--Penrose pseudoinverse, this work generalizes the gradient approximation technique called centred simplex gradient to allow sample sets containing any number of points. This approximation technique is called the \emph{generalized centred simplex gradient}. We develop error bounds and, under a full-rank condition, show that the error bounds have order $O(Δ^2)$, where $Δ$ is the radius of the sample set of points used. We establish calculus rules for generalized centred simplex gradients, introduce a calculus-based generalized centred simplex gradient and confirm that error bounds for this new approach are also order $O(Δ^2)$. We provide several examples to illustrate the results and some benefits of these new methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源