论文标题
在真实道路网络中最短路径问题的场景构建中
On scenario construction for stochastic shortest path problems in real road networks
论文作者
论文摘要
随机最短的路径计算通常是在非常严格的时间限制下进行的,因此计算效率至关重要。 CPU时间的主要决定因素是使用的场景数量。我们证明,通过仔细选择正确的方案生成方法来查找方案,对于给定数量的方案,可以大大改善计算的质量。我们从加利福尼亚高速公路网络中研究了一个真实案例,该网络具有438条路线和24个5分钟的时间段,这意味着10,512个随机速度变量,在时间和空间上相关,导致总共55,245,816个不同的相关性。我们发现(1)场景生成方法会生成公正的场景,并强烈胜过随机抽样的稳定性(即相对差异和方差),无论是使用哪一对和目标函数; (2)为了达到一定的准确性,场景生成所需的方案数量远低于随机抽样的数量,通常低约6-10倍,稳定性水平为1 \%; (3)不同的原点用途对和不同的目标函数可能需要不同数量的方案才能达到指定的稳定性。
Stochastic shortest path computations are often performed under very strict time constraints, so computational efficiency is critical. A major determinant for the CPU time is the number of scenarios used. We demonstrate that by carefully picking the right scenario generation method for finding scenarios, the quality of the computations can be improved substantially over random sampling for a given number of scenarios. We study a real case from a California freeway network with 438 road links and 24 5-minute time periods, implying 10,512 random speed variables, correlated in time and space, leading to a total of 55,245,816 distinct correlations. We find that (1) the scenario generation method generates unbiased scenarios and strongly outperforms random sampling in terms of stability (i.e., relative difference and variance) whichever origin-destination pair and objective function is used; (2) to achieve a certain accuracy, the number of scenarios required for scenario generation is much lower than that for random sampling, typically about 6-10 times lower for a stability level of 1\%; and (3) different origin-destination pairs and different objective functions could require different numbers of scenarios to achieve a specified stability.