论文标题
学习分布式控制器进行V形式
Learning Distributed Controllers for V-Formation
论文作者
论文摘要
我们展示了如何使用深度学习从集中式MPC(模型预测控制)控制器合成高性能,完全分布和对称的神经V型控制器。该结果很重要,因为我们还确定在非常合理的条件下,不可能使用确定性,分布式和对称控制器实现V形式。我们引入的反例引导的K折重训练技术CEGKR可显着增强我们用于神经V型控制器的学习过程,从而以重要方式扩展了先前的工作。我们的实验结果表明,我们的神经V型控制器将其推广到比受过训练的代理数量要大得多(从7到15),并且在基于MPC的控制器上表现出很大的加速。我们使用一种统计模型检查的形式来计算我们的神经V型控制器的收敛率和收敛时间的置信区间。
We show how a high-performing, fully distributed and symmetric neural V-formation controller can be synthesized from a Centralized MPC (Model Predictive Control) controller using Deep Learning. This result is significant as we also establish that under very reasonable conditions, it is impossible to achieve V-formation using a deterministic, distributed, and symmetric controller. The learning process we use for the neural V-formation controller is significantly enhanced by CEGkR, a Counterexample-Guided k-fold Retraining technique we introduce, which extends prior work in this direction in important ways. Our experimental results show that our neural V-formation controller generalizes to a significantly larger number of agents than for which it was trained (from 7 to 15), and exhibits substantial speedup over the MPC-based controller. We use a form of statistical model checking to compute confidence intervals for our neural V-formation controller's convergence rate and time to convergence.