论文标题

一种基于数据驱动的多尺度表示的信号降解的统计方法

A Statistical Approach to Signal Denoising Based on Data-driven Multiscale Representation

论文作者

Naveed, Khuram, Akhtar, Muhammad Tahir, Siddiqui, Muhammad Faisal, Rehman, Naveed ur

论文摘要

我们开发了一种数据驱动的信号denoising方法,该方法利用了变异模式分解(VMD)算法和Cramer von Misses(CVM)统计量。与经典的经验模式分解(EMD)相比,VMD享有卓越的数学和理论框架,使其对噪声和模式混合使其具有稳定性。 VMD的这些理想特性在将大部分噪声分离为几个最终模式中,而大多数信号含量分布在早期的噪声中。为了利用此表示形式来降低目的,我们建议估计主要噪音模式中噪声的分布,然后使用它来检测和拒绝其余模式中的噪声。提出的方法首先使用统计距离的CVM度量来选择主要嘈杂的模式。接下来,CVM统计量在其余模式上本地使用,以测试模式符合估计的噪声分布的程度。接近噪声分布的模式被拒绝(设置为零)。广泛的实验证明了所提出的方法的优越性,与信号的状态相比,在信号的状态下,在不知道噪声分布的实际应用中,其实用性在不知道先验的实际应用中。

We develop a data-driven approach for signal denoising that utilizes variational mode decomposition (VMD) algorithm and Cramer Von Misses (CVM) statistic. In comparison with the classical empirical mode decomposition (EMD), VMD enjoys superior mathematical and theoretical framework that makes it robust to noise and mode mixing. These desirable properties of VMD materialize in segregation of a major part of noise into a few final modes while majority of the signal content is distributed among the earlier ones. To exploit this representation for denoising purpose, we propose to estimate the distribution of noise from the predominantly noisy modes and then use it to detect and reject noise from the remaining modes. The proposed approach first selects the predominantly noisy modes using the CVM measure of statistical distance. Next, CVM statistic is used locally on the remaining modes to test how closely the modes fit the estimated noise distribution; the modes that yield closer fit to the noise distribution are rejected (set to zero). Extensive experiments demonstrate the superiority of the proposed method as compared to the state of the art in signal denoising and underscore its utility in practical applications where noise distribution is not known a priori.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源