论文标题
内容感知的神经散列以进行冷启动推荐
Content-aware Neural Hashing for Cold-start Recommendation
论文作者
论文摘要
内容感知的建议方法对于为\ textit {new}提供有意义的建议至关重要。我们提出了一种基于内容感知的神经哈希的协作过滤方法(Neuhash-CF),该方法为用户和项目生成二进制哈希码,以便可以使用高效的锤击距离来估计用户 - 项目相关性。 Neuhash-CF被建模为自动编码器体系结构,由两个联合哈希组件组成,用于生成用户和项目哈希代码。从语义哈希的启发下,该项目哈希组件直接从项目的内容信息中生成哈希代码(即,它以相同的方式生成冷启动和看到的物品哈希码)。这与现有的最新模型进行了对比,这些模型分别处理两个项目案例。用户哈希码是通过学习嵌入矩阵直接基于用户ID生成的。我们通过实验表明,Neuhash-CF在冷启动推荐环境中的最高最高为12 \%NDCG和13 \%MRR的Neuhash-CF明显优于最先进的基线,在训练期间所有项目中都存在的标准设置中,NDCG和MRR在NDCG和MRR中均高出4 \%。我们的方法使用2-4x较短的哈希码,同时与技术状态相比获得相同或更高的性能,因此也可以显着降低存储。
Content-aware recommendation approaches are essential for providing meaningful recommendations for \textit{new} (i.e., \textit{cold-start}) items in a recommender system. We present a content-aware neural hashing-based collaborative filtering approach (NeuHash-CF), which generates binary hash codes for users and items, such that the highly efficient Hamming distance can be used for estimating user-item relevance. NeuHash-CF is modelled as an autoencoder architecture, consisting of two joint hashing components for generating user and item hash codes. Inspired from semantic hashing, the item hashing component generates a hash code directly from an item's content information (i.e., it generates cold-start and seen item hash codes in the same manner). This contrasts existing state-of-the-art models, which treat the two item cases separately. The user hash codes are generated directly based on user id, through learning a user embedding matrix. We show experimentally that NeuHash-CF significantly outperforms state-of-the-art baselines by up to 12\% NDCG and 13\% MRR in cold-start recommendation settings, and up to 4\% in both NDCG and MRR in standard settings where all items are present while training. Our approach uses 2-4x shorter hash codes, while obtaining the same or better performance compared to the state of the art, thus consequently also enabling a notable storage reduction.