论文标题
连续可变的辅助热量子模拟
Continuous-variable assisted thermal quantum simulation
论文作者
论文摘要
在有限温度下对量子多体系统的仿真至关重要,但很具有挑战性。在这里,我们提出了一种实验可行的量子算法,该算法有助于连续变化,可在有限温度下模拟量子系统。我们的算法具有逆温度和所需精度的时间复杂性。我们通过模拟Kitaev模型的有限温度相图来证明量子算法。发现Kitaev环的重要跨界相图可以通过只有几个Qubit的量子计算机准确模拟,因此可以在当前量子处理器上容易实现该算法。我们进一步提出了一个可以通过超导或被困的离子量子计算机实现的协议。
Simulation of a quantum many-body system at finite temperatures is crucially important but quite challenging. Here we present an experimentally feasible quantum algorithm assisted with continuous-variable for simulating quantum systems at finite temperatures. Our algorithm has a time complexity scaling polynomially with the inverse temperature and the desired accuracy. We demonstrate the quantum algorithm by simulating finite temperature phase diagram of the Kitaev model. It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits and thus the algorithm may be readily implemented on current quantum processors. We further propose a protocol implementable with superconducting or trapped ion quantum computers.