论文标题

在某些情况下,Anosov内态的刚性僵硬

Rigidity for Some Cases of Anosov Endomorphisms of Torus

论文作者

Micena, Fernando

论文摘要

在保守的情况下,我们获得了非必要特殊的Anosov内态性质之间的平稳结合。除其他结果外,我们证明了一个非常特殊的$ c^{\ infty} - $ anosov的内态为$ \ mathbb {t}^2 $及其线性化及其线性化,因为它们具有相同的周期性数据。假设对于一个非常特殊的$ c^{\ infty} - $ anosov的$ \ mathbb {t}^2 $每个点的内态是常规的(在Oseledec的定理中),那么我们通过其线性化再次获得了平滑的结合。 我们还获得了$ d $ torus的线性Anosov内态局部刚性的一些结果,其中$ d \ geq 3,在定期数据假设下$。在不变叶上定义的微分方程的研究在刚性问题(例如此处处理的问题)中起着重要作用。

We obtain smooth conjugacy between non-necessarily special Anosov endomorphisms in the conservative case. Among other results, we prove that a strongly special $C^{\infty}-$Anosov endomorphism of $\mathbb{T}^2$ and its linearization are smoothly conjugated since they have the same periodic data. Assuming that for a strongly special $C^{\infty}-$Anosov endomorphism of $\mathbb{T}^2$ every point is regular (in Oseledec's Theorem sense), then we obtain again smooth conjugacy with its linearization. We also obtain some results on local rigidity of linear Anosov endomorphisms of $d-$torus, where $d \geq 3,$ under periodic data assumption. The study of differential equations defined on invariant leaves plays an important role in rigidity problems such as those treated here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源