论文标题
II-VI有机无机杂交纳米结构具有大大增强的光电特性,完美有序的结构和超过15年的架子稳定性
II-VI Organic-Inorganic Hybrid Nanostructures with Greatly Enhanced Optoelectronic Properties, Perfectly Ordered Structures, and Over 15-Year Shelf Stability
论文作者
论文摘要
有机无机杂种可能会提供其无机组件中无法获得的材料特性。但是,它们通常不那么稳定和混乱。在现实世界电子设备的预期寿命中,对混合材料的长期稳定性研究实际上不存在。混乱,在大多数纳米结构组件中普遍存在,是量子相干的重要对手。已经证明,一个完美有序的II-VI杂种纳米结构的家族具有许多异常的特性和潜在的应用。在这里,使用原型结构Znte(EN)0.5-混合晶格,并应用一系列光学,结构,表面,表面,热和电气表征技术与密度功能性理论计算结合,我们已经对晶体质量,质量,电子质量,电子,电子,电子,以及对晶体的质量,电子,电子,电子,电子,电子,电子,电子,电子,电子,电子,电子的全面研究,以及合成。研究结果表明,它们不仅在宏观和微观尺度上都表现出异常高的结晶度,而且与高质量的二元半导体相当。与无机成分相比,材料特性大大增强了;而且,其中一些超过15岁以上的结构和财产仍然像新鲜制造的那样。这项研究揭示了(1)在复杂的有机无机杂交结构或人造的超晶格中可以实现哪种结构完美,这表明非传统策略可以使定期堆叠的异质结构具有突然的界面; (2)混合材料的稳定性如何受到其内在属性的不同影响,主要是形成能量和外部因素,例如表面和缺陷。
Organic-inorganic hybrids may offer material properties not available from their inorganic components. However, they are typically less stable and disordered. Long-term stability study of the hybrid materials, over the anticipated lifespan of a real-world electronic device, is practically nonexistent. Disordering, prevalent in most nanostructure assemblies, is a prominent adversary to quantum coherence. A family of perfectly ordered II-VI based hybrid nanostructures has been shown to possess a number of unusual properties and potential applications. Here, using a prototype structure ZnTe(en)0.5 - a hybrid superlattice, and applying an array of optical, structural, surface, thermal, and electrical characterization techniques in conjunction with density-functional theory calculations, we have performed a comprehensive and correlative study of the crystalline quality, structural degradation, electronic, optical, and transport properties on samples from over 15-years old to the recently synthesized. The findings show that not only do they exhibit an exceptionally high level of crystallinity in both macroscopic and microscopic scale, comparable to high-quality binary semiconductors; and greatly enhanced material properties, compared to those of the inorganic constituents; but also, some of them over 15-years old remain as good in structure and property as freshly made ones. This study reveals (1) what level of structural perfectness is achievable in a complex organic-inorganic hybrid structure or a man-made superlattice, suggesting a non-traditional strategy to make periodically stacked heterostructures with abrupt interfaces; and (2) how the stability of a hybrid material is affected differently by its intrinsic attributes, primarily formation energy, and extrinsic factors, such as surface and defects.