论文标题

晶格覆盖密度的新界限

New bounds on the density of lattice coverings

论文作者

Ordentlich, Or, Regev, Oded, Weiss, Barak

论文摘要

我们通过扩张凸体K的扩张获得了欧几里得空间晶格覆盖率最小密度的新上限。我们还获得了概率(相对于晶格空间上的天然Haar-siegel测度)的界限,即随机选择的晶格l+满足L+k是所有空间。作为证明的一步,我们利用并加强了离散的Kakeya问题的结果。

We obtain new upper bounds on the minimal density of lattice coverings of Euclidean space by dilates of a convex body K. We also obtain bounds on the probability (with respect to the natural Haar-Siegel measure on the space of lattices) that a randomly chosen lattice L satisfies that L+K is all of space. As a step in the proof, we utilize and strengthen results on the discrete Kakeya problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源