论文标题
使用LIDAR的实时多构造障碍物避免方法
A real-time multi-constraints obstacle avoidance method using LiDAR
论文作者
论文摘要
避免障碍是自动移动机器人的必不可少的和必不可少的功能之一。大多数现有解决方案通常基于单一条件约束,无法实时合并传感器数据,而传感器数据通常无法响应动态未知环境中意外的移动障碍。在本文中,提出了一种新型的实时多构造障碍方法,使用光检测和范围(LIDAR)提出,该方法可以根据对机器人姿势和环境的最新估计,可以根据探索区域内的多构符号定义的子目标,并在每个时间的时间范围内均可在每个时间步骤效果上均可在探索区域中定义最佳轨迹,从而在每个时间步长效果,因此可以在机器人步骤效果上进行启用。同时,在每个时间步骤中,改进的蚂蚁菌落优化(ACO)算法也用于将最佳的最佳路径从最新的机器人姿势重新计划为最新定义的亚目标位置。在确保收敛的同时,通过重复的局部优化来完成此方法的计划,以便可以在每个步骤中充分利用来自LiDAR和派生环境信息的最新传感器数据,直到机器人达到所需的位置为止。这种方法促进了实时性能,由于其性质而对内存空间或计算能力也几乎不需要,因此我们的方法具有使小型低成本自主平台受益的巨大潜力。在模拟和现实世界实验中,对该方法进行了对几种现有技术的评估。
Obstacle avoidance is one of the essential and indispensable functions for autonomous mobile robots. Most of the existing solutions are typically based on single condition constraint and cannot incorporate sensor data in a real-time manner, which often fail to respond to unexpected moving obstacles in dynamic unknown environments. In this paper, a novel real-time multi-constraints obstacle avoidance method using Light Detection and Ranging(LiDAR) is proposed, which is able to, based on the latest estimation of the robot pose and environment, find the sub-goal defined by a multi-constraints function within the explored region and plan a corresponding optimal trajectory at each time step iteratively, so that the robot approaches the goal over time. Meanwhile, at each time step, the improved Ant Colony Optimization(ACO) algorithm is also used to re-plan optimal paths from the latest robot pose to the latest defined sub-goal position. While ensuring convergence, planning in this method is done by repeated local optimizations, so that the latest sensor data from LiDAR and derived environment information can be fully utilized at each step until the robot reaches the desired position. This method facilitates real-time performance, also has little requirement on memory space or computational power due to its nature, thus our method has huge potentials to benefit small low-cost autonomous platforms. The method is evaluated against several existing technologies in both simulation and real-world experiments.