论文标题
电势中主动热颗粒的首次通过时间分布
First passage time distribution of active thermal particles in potentials
论文作者
论文摘要
我们引入了一种扰动方法,以在随机的一维过程中计算出第一个小时时间分布的所有力矩,这些过程均受到白色和有色噪声的影响。这类非马克维亚过程是热活动物质研究的核心,即受到扩散的自螺旋粒子。关于马尔可夫过程的扰动理论认为,与热波动相比,自我推测的效果很小。为了说明我们的方法,我们将其应用于环上的谐波陷阱(II)中的活动热颗粒(i)。对于这两个方面,我们都计算出第一通道时间的矩产功能的一阶校正,从而计算出其所有力矩的一阶校正。将我们的分析结果与数字进行比较。
We introduce a perturbative method to calculate all moments of the first-passage time distribution in stochastic one-dimensional processes which are subject to both white and coloured noise. This class of non-Markovian processes is at the centre of the study of thermal active matter, that is self-propelled particles subject to diffusion. The perturbation theory about the Markov process considers the effect of self-propulsion to be small compared to that of thermal fluctuations. To illustrate our method, we apply it to the case of active thermal particles (i) in a harmonic trap (ii) on a ring. For both we calculate the first-order correction of the moment-generating function of first-passage times, and thus to all its moments. Our analytical results are compared to numerics.