论文标题

电子显微镜的自动神经元形状分析

Automated Neuron Shape Analysis from Electron Microscopy

论文作者

Seshamani, Sharmishtaa, Elabbady, Leila, Schneider-Mizell, Casey, Mahalingam, Gayathri, Dorkenwald, Sven, Bodor, Agnes, Macrina, Thomas, Bumbarger, Daniel, Buchanan, JoAnn, Takeno, Marc, Yin, Wenjing, Brittain, Derrick, Torres, Russel, Kapner, Daniel, lee, Kisuk, Lu, Ran, Wu, Jinpeng, daCosta, Nuno, Reid, Clay, Collman, Forrest

论文摘要

几十年来,基于形态的细胞类型的分析一直是神经科学界引起了极大兴趣的领域。最近,小鼠脑的高分辨率电子显微镜(EM)数据集为以前不可能的细节级别开放了数据分析的机会。这些数据集本质上很大,因此,手动分析不是实际解决方案。特别有趣的是突触后结构水平的细节。本文提出了一个完全自动化的框架,用于分析来自EM数据的基于突触后结构的神经元分析。该处理框架涉及基于形状分布的自动编码器的形状提取,用自动编码器的表示以及整个细胞建模和分析。我们将新型框架应用于1031个神经元的数据集,该数据集是从成像1mm x 1mm x 40千分尺的小鼠视觉皮层中获得的,并在神经元形状的聚类和分类中显示了我们方法的强度。

Morphology based analysis of cell types has been an area of great interest to the neuroscience community for several decades. Recently, high resolution electron microscopy (EM) datasets of the mouse brain have opened up opportunities for data analysis at a level of detail that was previously impossible. These datasets are very large in nature and thus, manual analysis is not a practical solution. Of particular interest are details to the level of post synaptic structures. This paper proposes a fully automated framework for analysis of post-synaptic structure based neuron analysis from EM data. The processing framework involves shape extraction, representation with an autoencoder, and whole cell modeling and analysis based on shape distributions. We apply our novel framework on a dataset of 1031 neurons obtained from imaging a 1mm x 1mm x 40 micrometer volume of the mouse visual cortex and show the strength of our method in clustering and classification of neuronal shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源