论文标题

数据驱动的融合预测Astrobots群

Data-Driven Convergence Prediction of Astrobots Swarms

论文作者

Macktoobian, Matin, Basciani, Francesco, Gillet, Denis, Kneib, Jean-Paul

论文摘要

机器人是机器人伪影,其群用于天体物理研究,以生成可观察到的宇宙的图。相对于各种所需观察,必须协调这些群体。这样的协调非常复杂,以至于分布式群体控制器不能总是协调足够的天体,以实现在观察过程中获得的最低数据。因此,需要进行收敛验证以在执行之前检查协调的适用性。但是,为此目的不存在正式验证方法。在本文中,我们使用机器学习来预测Astrobot群的收敛性。特别是,我们提出了一种基于加权$ K $ -NN的算法,该算法需要群的初始状态以及其观​​察目标以预测其收敛性。我们的算法学会根据从所需群的先前协调获得的协调数据来预测。该方法首先基于距离度量为每个Astrobot生成收敛概率。然后,将这些概率转化为完整或不完整的分类结果。该方法适用于两个典型的群,包括116和487个天体。事实证明,成功协调的正确预测可能是总体预测的80%。因此,这些结果见证了我们的预测收敛分析策略的有效准确性。

Astrobots are robotic artifacts whose swarms are used in astrophysical studies to generate the map of the observable universe. These swarms have to be coordinated with respect to various desired observations. Such coordination are so complicated that distributed swarm controllers cannot always coordinate enough astrobots to fulfill the minimum data desired to be obtained in the course of observations. Thus, a convergence verification is necessary to check the suitability of a coordination before its execution. However, a formal verification method does not exist for this purpose. In this paper, we instead use machine learning to predict the convergence of astrobots swarm. In particular, we propose a weighted $k$-NN-based algorithm which requires the initial status of a swarm as well as its observational targets to predict its convergence. Our algorithm learns to predict based on the coordination data obtained from previous coordination of the desired swarm. This method first generates a convergence probability for each astrobot based on a distance metric. Then, these probabilities are transformed to either a complete or an incomplete categorical result. The method is applied to two typical swarms including 116 and 487 astrobots. It turns out that the correct prediction of successful coordination may be up to 80% of overall predictions. Thus, these results witness the efficient accuracy of our predictive convergence analysis strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源