论文标题

可集成(2 +1)尺寸KMN方程的新型弯曲孤子

Novel curved solitons of integrable (2 +1) dimensional KMN equation

论文作者

Mukherjee, Abhik

论文摘要

在这封信中,获得了可集成的(2+1)尺寸Kundu Mukherjee Naskar(KMN)方程的独特的精确团块和拓扑孤子溶液。这些解决方案具有不寻常的属性,由于空间(x)的任意功能(x)和时间(t)的分析形式,它们可以任意在平面上弯曲。由于这种特殊功能,该溶液可用于建模光学孤子束的弯曲,即在实际的物理实验条件下的不同类型的波结构。这是恒定系数完全可完全集成的方程式的罕见特性,是由于伽利略的共同差异属性和像KMN方程中存在的非线性一样的电流引起的。

In this letter, the unique exact lump and topological soliton solutions of integrable (2+1) dimensional Kundu Mukherjee Naskar (KMN) equation are obtained. These solutions have an unusual property that they can get curved in the plane arbitrarily due to the presence of an arbitrary function of space(x) and time(t) in their analytic forms. Due to this special feature, the solutions can be used to model the bending of optical solitonic beam, different types of wave structures in real physical experimental conditions. This novel feature, which is a rare property for a constant coefficient completely integrable equation, arises due to the Galilean co-variance property and current like nonlinearity present in the KMN equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源