论文标题
使用光学时钟网络以18位精度的频率比测量
Frequency Ratio Measurements with 18-digit Accuracy Using a Network of Optical Clocks
论文作者
论文摘要
原子钟在测量科学中占据了独特的位置,比其他测量标准表现出更高的精度,并且在SI系统中的七个基本单元中有六个基础。通过利用较高的共振频率,光原子时钟现在比现有的主要标准更高的稳定性和更低的频率不确定性。在这里,我们报告了$^{27} $ al $^+$,$^{171} $ yb和$^{87} $^{87} $ sr光学时钟的频率比,在科罗拉多州的Boulder中,跨纤维和自由空间链接跨越光学网络。这些比率已经通过测量不确定性在$ 6 \ times10^{ - 18} $和$ 8 \ times10^{ - 18} $之间进行了评估,这使它们成为迄今为止频率比的最准确的测量值。这代表了重新定义SI第二和未来应用的关键一步,例如相对论地理学和基本物理测试。
Atomic clocks occupy a unique position in measurement science, exhibiting higher accuracy than any other measurement standard and underpinning six out of seven base units in the SI system. By exploiting higher resonance frequencies, optical atomic clocks now achieve greater stability and lower frequency uncertainty than existing primary standards. Here, we report frequency ratios of the $^{27}$Al$^+$, $^{171}$Yb and $^{87}$Sr optical clocks in Boulder, Colorado, measured across an optical network spanned by both fiber and free-space links. These ratios have been evaluated with measurement uncertainties between $6\times10^{-18}$ and $8\times10^{-18}$, making them the most accurate reported measurements of frequency ratios to date. This represents a critical step towards redefinition of the SI second and future applications such as relativistic geodesy and tests of fundamental physics.