论文标题

在本地Finte类别的K_0上

On K_0 of locally finte categories

论文作者

Drozd, Yuriy A.

论文摘要

我们计算Grothendieck组$ k_0(\ cal a)$,其中$ \ cal a $是一个加性类别,在Dedekind环上本地有限,并满足了一些其他条件。主要示例是有限代数上的模块类别和稳定的同型类别$ \ mathsf {sw} $的有限cw-complexes。我们表明,该组是由类别$ \ cal a $的本地化和类似于理想类别最大订单的组类似的群体的直接总和。作为推论,我们获得了弗雷德定理的新简单证明,描述了组$ k_0(\ mathsf {sw})$。

We calculate the Grothendieck group $K_0(\cal A)$, where $\cal A$ is an additive category, locally finite over a Dedekind ring and satisfying some additional conditions. The main examples are categories of modules over finite algebras and the stable homotopy category $\mathsf{SW}$ of finite CW-complexes. We show that this group is a direct sum of a free group arising from localizations of the category $\cal A$ and a group analogous to the groups of ideal classes of maximal orders. As a corollary, we obtain a new simple proof of the Freyd's theorem describing the group $K_0(\mathsf{SW})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源