论文标题

用顺序网络构建人类运动歧管

Constructing Human Motion Manifold with Sequential Networks

论文作者

Jang, Deok-Kyeong, Lee, Sung-Hee

论文摘要

本文提出了一种新型的基于神经网络的方法,用于构建潜在运动歧管,该方法可以长期代表各种人类运动。我们介绍了几个新组件,以增加运动空间中的空间和时间覆盖,同时保留运动捕获数据的细节。其中包括运动歧管的新正规化项,两个用于预测关节旋转和关节速度的补充解码器的组合以及添加正向运动学层以考虑关节旋转和位置误差。此外,我们提出了一组损失项,以从各个方面提高运动歧管的总体质量,例如重建运动的能力,不仅是运动,而且还可以通过对抗性损失来重建运动。这些组件有助于创建紧凑而多功能的运动歧管,该运动歧管可以通过在潜在运动歧管中执行随机采样和代数操作(例如插值和类比)来创建新运动。

This paper presents a novel recurrent neural network-based method to construct a latent motion manifold that can represent a wide range of human motions in a long sequence. We introduce several new components to increase the spatial and temporal coverage in motion space while retaining the details of motion capture data. These include new regularization terms for the motion manifold, combination of two complementary decoders for predicting joint rotations and joint velocities, and the addition of the forward kinematics layer to consider both joint rotation and position errors. In addition, we propose a set of loss terms that improve the overall quality of the motion manifold from various aspects, such as the capability of reconstructing not only the motion but also the latent manifold vector, and the naturalness of the motion through adversarial loss. These components contribute to creating compact and versatile motion manifold that allows for creating new motions by performing random sampling and algebraic operations, such as interpolation and analogy, in the latent motion manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源