论文标题
UGC-VQA:用户生成的内容的盲视频质量评估基准测试
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
论文作者
论文摘要
近年来,由于负担得起且可靠的消费者捕获设备的演变以及社交媒体平台的广泛流行,近年来在互联网上共享和流式传输了用户生成的内容(UGC)视频爆炸。因此,对于UGC/消费者视频,非常需要准确的视频质量评估(VQA)模型,以监视,控制和优化这些庞大的内容。野外视频的盲目质量预测非常具有挑战性,因为UGC内容的质量降解是不可预测的,复杂的,而且经常被混为一谈。在这里,我们通过对固定评估架构的领先的No-Reference/Blind VQA(BVQA)特征和模型进行全面评估来为UGC-VQA问题提供贡献,从而对主观视频质量研究和VQA模型设计产生了新的经验见解。通过在领先的VQA模型功能上采用功能选择策略,我们能够提取领先模型使用的763个统计功能中的60个,以创建新的基于Fusion的BVQA模型,我们将其配置为\ textbf {vid} eo质量\ textbf \ textbf {eval} uator(eval} uator(videval)),从而有效地在贸易范围内保持了VEQA和高级效率。我们的实验结果表明,视频与其他领先模型相比,以大大低的计算成本来实现最先进的性能。我们的研究协议还为UGC-VQA问题定义了可靠的基准,我们认为这将有助于进一步研究基于深度学习的VQA建模,以及感知优化的有效的UGC视频处理,跨编码和流媒体。为了促进可重复的研究和公众评估,已在线提供了视频的实施:\ url {https://github.com/tu184044109/videval_release}。
Recent years have witnessed an explosion of user-generated content (UGC) videos shared and streamed over the Internet, thanks to the evolution of affordable and reliable consumer capture devices, and the tremendous popularity of social media platforms. Accordingly, there is a great need for accurate video quality assessment (VQA) models for UGC/consumer videos to monitor, control, and optimize this vast content. Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of UGC content are unpredictable, complicated, and often commingled. Here we contribute to advancing the UGC-VQA problem by conducting a comprehensive evaluation of leading no-reference/blind VQA (BVQA) features and models on a fixed evaluation architecture, yielding new empirical insights on both subjective video quality studies and VQA model design. By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models to create a new fusion-based BVQA model, which we dub the \textbf{VID}eo quality \textbf{EVAL}uator (VIDEVAL), that effectively balances the trade-off between VQA performance and efficiency. Our experimental results show that VIDEVAL achieves state-of-the-art performance at considerably lower computational cost than other leading models. Our study protocol also defines a reliable benchmark for the UGC-VQA problem, which we believe will facilitate further research on deep learning-based VQA modeling, as well as perceptually-optimized efficient UGC video processing, transcoding, and streaming. To promote reproducible research and public evaluation, an implementation of VIDEVAL has been made available online: \url{https://github.com/tu184044109/VIDEVAL_release}.