论文标题

强烈无序的1D语音晶格中的波传播支撑旋转波

Wave propagation in a strongly disordered 1D phononic lattice supporting rotational waves

论文作者

Ngapasare, A., Theocharis, G., Richoux, O., Skokos, Ch., Achilleos, V.

论文摘要

我们研究了由立方块单元组成的强无序微极晶格的动力学特性。该语音晶格模型支持横向和旋转自由度,因此其无序变体具有一个有趣的问题,因为它可用于建模物理上重要的系统(例如梁状的微结构)。发现两种自由度上的不同种类的单位兴奋(动量或流离失所)被发现导致超级延伸和延伸的不同能量运输。我们表明,对于任何初始条件,低频延长波和位于周期案例上分支的边缘的一组高频模式促进了能量扩张。但是,能量分布的第二刻在很大程度上取决于初始条件,并且比基础的一个维谐波晶格(具有一个自由度)要慢。最后,研究了一个微极晶格的限制案例,其中发现安德森定位持续存在并且没有能量扩散。

We investigate the dynamical properties of a strongly disordered micropolar lattice made up of cubic block units. This phononic lattice model supports both transverse and rotational degrees of freedom hence its disordered variant posses an interesting problem as it can be used to model physically important systems like beam-like microstructures. Different kinds of single site excitations (momentum or displacement) on the two degrees of freedom are found to lead to different energy transport both superdiffusive and subdiffusive. We show that the energy spreading is facilitated both by the low frequency extended waves and a set of high frequency modes located at the edge of the upper branch of the periodic case for any initial condition. However, the second moment of the energy distribution strongly depends on the initial condition and it is slower than the underlying one dimensional harmonic lattice (with one degree of freedom). Finally, a limiting case of the micropolar lattice is studied where Anderson localization is found to persist and no energy spreading takes place.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源