论文标题

定期距离的图表 - $ 2 $图形

A characterization of graphs with regular distance-$2$ graphs

论文作者

Gaar, Elisabeth, Krenn, Daniel

论文摘要

对于非阴性整数〜$ k $,我们考虑每个顶点在距离上完全具有$ k $的顶点〜$ 2 $,即距离的图形,其距离为$ 2 $ graphs为$ k $ regular。我们称之为$ k $ metAmour triminology in polyamory中的动机。 虽然构建$ k $ - metamour-regular图表相对容易 - 我们为任意〜$ k $提供了通用的结构 - 找到所有这些图形都更具挑战性。我们表明,只有$ k $ - metamour-formular图形没有特定属性的构造。此外,我们得出了$ k $ -metAmour-regular图表的完整表征,每个$ k = 0 $,$ k = 1 $和$ k = 2 $。特别是,当且仅当$ n \ ge5 $且图形是循环中的一个连接时,带有〜$ n $顶点的连接图为$ 2 $ - metamour-regular(仅当每个顶点都具有〜$ n-3 $),一个周期,或17美元的$ n \ n \ n \ le8 $ 8 $的$ 17 $。此外,每个顶点最多都有一个metamour的图表的表征。每个表征都伴随着对未标记图的相应计数序列的研究。

For non-negative integers~$k$, we consider graphs in which every vertex has exactly $k$ vertices at distance~$2$, i.e., graphs whose distance-$2$ graphs are $k$-regular. We call such graphs $k$-metamour-regular motivated by the terminology in polyamory. While constructing $k$-metamour-regular graphs is relatively easy -- we provide a generic construction for arbitrary~$k$ -- finding all such graphs is much more challenging. We show that only $k$-metamour-regular graphs with a certain property cannot be built with this construction. Moreover, we derive a complete characterization of $k$-metamour-regular graphs for each $k=0$, $k=1$ and $k=2$. In particular, a connected graph with~$n$ vertices is $2$-metamour-regular if and only if $n\ge5$ and the graph is a join of complements of cycles (equivalently every vertex has degree~$n-3$), a cycle, or one of $17$ exceptional graphs with $n\le8$. Moreover, a characterization of graphs in which every vertex has at most one metamour is acquired. Each characterization is accompanied by an investigation of the corresponding counting sequence of unlabeled graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源