论文标题
晶粒生长对原球盘热结构的影响
Influence of grain growth on the thermal structure of protoplanetary discs
论文作者
论文摘要
原球盘的热结构受粉尘晶粒提供的不透明度调节。但是,以前的作品通常考虑了流体动力盘模拟中尘埃不透明的简化处方,例如通过仅考虑单个粒径。在目前的工作中,我们对原球盘进行了2D流体动力学模拟,其中考虑到粒径,组成和丰度,在粉尘种群中不透明度的透明度是自一计算的。我们首先将使用单晶粒尺寸的模拟与不同水平的湍流强度下的两个不同的多晶粒大小分布进行比较,该模拟通过$α$粘度和不同的气表面密度进行了参数。假设单个灰尘大小会导致盘的热结构的计算不准确,因为粒度主导着不透明度随轨道半径增加。总体而言,两种晶粒尺寸分布仅受碎片的限制,另一个是由更完整的片段化结合平衡确定的,对热结构产生了相似的结果。我们发现,与仅具有微米大小的灰尘的盘相比,这两种晶粒尺寸的分布都具有较不陡的不透明度梯度,从而导致长宽比梯度较小。此外,在具有晶粒尺寸分布的光盘中,最内向的向外迁移区域被拆除,并且嵌入行星的椎间盘经历了较低的迁移率。我们还研究了水偶像位置对α-粘度的依赖性,初始气体表面密度在1 au和粉尘与气体比,并找到$ r_ {ice} \ proptoα^{0.61}σ_{g,0}^{0}^{0.8}^{0.8} f_ {dg} f_ {dg}^{dg}^0.37} 0.37} $独立。在谷物生长,不透明性和椎间盘热力学之间包含反馈回路,可以对积聚盘和行星形成进行更多的自洽模拟。
The thermal structure of a protoplanetary disc is regulated by the opacity that dust grains provide. However, previous works have often considered simplified prescriptions for the dust opacity in hydrodynamical disc simulations, e.g. by considering only a single particle size. In the present work we perform 2D hydrodynamical simulations of protoplanetary discs where the opacity is self-consistently calculated for the dust population, taking into account the particle size, composition and abundance. We first compare simulations using single grain sizes to two different multi-grain size distributions at different levels of turbulence strengths, parameterized through the $α$-viscosity, and different gas surface densities. Assuming a single dust size leads to inaccurate calculations of the thermal structure of discs, because the grain size dominating the opacity increases with orbital radius. Overall the two grain size distributions, one limited by fragmentation only and the other determined from a more complete fragmentation-coagulation equilibrium, give similar results for the thermal structure. We find that both grain size distributions give less steep opacity gradients that result in less steep aspect ratio gradients, in comparison to discs with only micrometer sized dust. Moreover, in the discs with a grain size distribution, the innermost outward migration region is removed and planets embedded is such discs experience lower migration rates. We also investigate the dependency of the water iceline position on the alpha-viscosity, the initial gas surface density at 1 AU and the dust-to-gas ratio and find $r_{ice} \propto α^{0.61} Σ_{g,0}^{0.8} f_{DG}^{0.37}$ independently of the distribution used. The inclusion of the feedback loop between grain growth, opacities and disc thermodynamics allows for more self-consistent simulations of accretion discs and planet formation.