论文标题

Minkowski分解,用于广泛的无环类型

Minkowski decompositions for generalized associahedra of acyclic type

论文作者

Jahn, Dennis, Löwe, Robert, Stump, Christian

论文摘要

我们给出了带有无acyclic初始种子的有限类型群集代数的G-Vector型粉丝类型锥体的发电机的显式子字复杂描述。这尤其在S. Brodsky和第三作者的猜想中对F-Polynomials的牛顿多型的描述进行了描述。然后,我们表明簇复合物在群体上是同构的,这是D. Speyer和L. Williams猜想的聚类品种热带化的完全积极部分。

We give an explicit subword complex description of the generators of the type cone of the g-vector fan of a finite type cluster algebra with acyclic initial seed. This yields in particular a description of the Newton polytopes of the F-polynomials in terms of subword complexes as conjectured by S. Brodsky and the third author. We then show that the cluster complex is combinatorially isomorphic to the totally positive part of the tropicalization of the cluster variety as conjectured by D. Speyer and L. Williams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源