论文标题
在规范集合中的伊辛模型的群集扩展
Cluster expansion for the Ising model in the canonical ensemble
论文作者
论文摘要
我们显示了Ising模型的规范集合中群集扩展的有效性。我们将其收敛半径的下限与在大型典型合奏中工作的病毒膨胀计算出的融合半径。使用群集扩展,我们通过量化相关性衰减,中心极限定理和较大偏差的高阶误差项进行直接证明。
We show the validity of the cluster expansion in the canonical ensemble for the Ising model. We compare the lower bound of its radius of convergence with the one computed by the virial expansion working in the grand-canonical ensemble. Using the cluster expansion we give direct proofs with quantification of the higher order error terms for the decay of correlations, central limit theorem and large deviations.