论文标题

自动肺炎检测的深度学习

Deep Learning for Automatic Pneumonia Detection

论文作者

Gabruseva, Tatiana, Poplavskiy, Dmytro, Kalinin, Alexandr A.

论文摘要

肺炎是幼儿死亡的主要原因,也是全球最大的死亡率之一。肺炎检测通常是通过受过良好训练的专家检查胸部X射线射线照相的。这个过程很乏味,通常导致放射科医生之间存在分歧。计算机辅助诊断系统显示了提高诊断准确性的潜力。在这项工作中,我们开发了基于单杆检测器,挤压和激发深度卷积神经网络,增强和多任务学习的肺炎区域检测的计算方法。在北美肺炎检测挑战的背景下,评估了所提出的方法,这是挑战中最好的结果之一。

Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide. The pneumonia detection is usually performed through examine of chest X-ray radiograph by highly-trained specialists. This process is tedious and often leads to a disagreement between radiologists. Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy. In this work, we develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning. The proposed approach was evaluated in the context of the Radiological Society of North America Pneumonia Detection Challenge, achieving one of the best results in the challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源