论文标题

通过动态优化,更有效的随机搜索启发式用于图形着色

More Effective Randomized Search Heuristics for Graph Coloring Through Dynamic Optimization

论文作者

Bossek, Jakob, Neumann, Frank, Peng, Pan, Sudholt, Dirk

论文摘要

动态优化问题在进化计算中引起了极大的关注,因为进化算法(EAS)可以很容易地适应不断变化的环境。我们表明,通过使用动态优化,EAS可以更有效地解决两部分图的图形着色问题。在我们的方法中,图形实例会逐渐给出,以便当新的边缘引入冲突时,EA可以重新优化其着色。我们表明,当边缘以保留图形连接的方式插入边缘时,随机局部搜索(RLS)有效地找到了所有两部分图的合适的2色。这包括RLS和其他EA需要在静态优化方案中需要指数期望时间的图表。我们研究了通过流行的图形遍历构建图形的不同方法,例如广度优先搜索和深度搜索,并分析所得的运行时行为。我们进一步表明,后代人群(例如A(1+$λ$)RLS)导致$λ$的指数加速。最后,使用3个岛屿的岛屿模型在每个$ m $ $ - 边缘两部分图上的最佳最佳时间内取得了成功,表现优于后代人群。这是第一个岛屿模型保证在岛屿数量中没有限制的速度的第一个例子。

Dynamic optimization problems have gained significant attention in evolutionary computation as evolutionary algorithms (EAs) can easily adapt to changing environments. We show that EAs can solve the graph coloring problem for bipartite graphs more efficiently by using dynamic optimization. In our approach the graph instance is given incrementally such that the EA can reoptimize its coloring when a new edge introduces a conflict. We show that, when edges are inserted in a way that preserves graph connectivity, Randomized Local Search (RLS) efficiently finds a proper 2-coloring for all bipartite graphs. This includes graphs for which RLS and other EAs need exponential expected time in a static optimization scenario. We investigate different ways of building up the graph by popular graph traversals such as breadth-first-search and depth-first-search and analyse the resulting runtime behavior. We further show that offspring populations (e. g. a (1+$λ$) RLS) lead to an exponential speedup in $λ$. Finally, an island model using 3 islands succeeds in an optimal time of $Θ(m)$ on every $m$-edge bipartite graph, outperforming offspring populations. This is the first example where an island model guarantees a speedup that is not bounded in the number of islands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源