论文标题
Poisson限制了Robinson-Schensted通信和多行Hammersley过程的定理
Poisson limit theorems for the Robinson-Schensted correspondence and for the multi-line Hammersley process
论文作者
论文摘要
我们认为Robinson-Schensted-Knuth算法应用于随机输入,并研究相应年轻图的底部行的生长。我们证明了由此产生的Plancherel生长过程的多维泊松定理。这样,我们将Aldous和Diaconis的结果扩展到不仅仅是一行。该结果可以解释为多行Hammersley过程与其固定分布的融合,这是由独立泊松点过程集合给出的。
We consider Robinson-Schensted-Knuth algorithm applied to a random input and study the growth of the bottom rows of the corresponding Young diagrams. We prove multidimensional Poisson limit theorem for the resulting Plancherel growth process. In this way we extend the result of Aldous and Diaconis to more than just one row. This result can be interpreted as convergence of the multi-line Hammersley process to its stationary distribution which is given by a collection of independent Poisson point processes.