论文标题

使用离散标题长度特征序列匹配方法的基于图的本体感受性定位

Graph-based Proprioceptive Localization Using a Discrete Heading-Length Feature Sequence Matching Approach

论文作者

Cheng, Hsin-Min, Song, Dezhen

论文摘要

本体感受的本地化是指不依赖于对外部地标的感知和识别的新的机器人egentric定位方法。这些方法自然不受恶劣天气,较差的照明条件或其他极端环境条件的影响,这些条件可能会阻碍外部感受性传感器,例如摄像机或激光游侠发现器。这些方法取决于本体感受的传感器,例如惯性测量单元(IMU)和/或车轮编码器。在磁受体的辅助下,传感器可以提供对车辆轨迹的基本估计,该轨迹用于查询先前已知的映射以获得位置。我们称为基于图的本体感受定位(GBPL),我们为在充满挑战的环境条件下定位提供了低成本的后备解决方案。作为机器人/车辆的行驶,我们从轨迹中提取了直段的一系列直角长度值,并与从先前已知的映射中抽象的预处理标题长度图(HLG)匹配,以在图形匹配方法下定位机器人。使用来自HLG的信息,我们的位置比对和验证模块补偿了轨迹漂移,车轮滑移或轮胎充气水平。我们已经实施了算法并在模拟和物理实验中对其进行了测试。该算法在连续查找机器人位置并在先前地图允许的级别(小于10m)的水平上成功地找到定位。

Proprioceptive localization refers to a new class of robot egocentric localization methods that do not rely on the perception and recognition of external landmarks. These methods are naturally immune to bad weather, poor lighting conditions, or other extreme environmental conditions that may hinder exteroceptive sensors such as a camera or a laser ranger finder. These methods depend on proprioceptive sensors such as inertial measurement units (IMUs) and/or wheel encoders. Assisted by magnetoreception, the sensors can provide a rudimentary estimation of vehicle trajectory which is used to query a prior known map to obtain location. Named as graph-based proprioceptive localization (GBPL), we provide a low cost fallback solution for localization under challenging environmental conditions. As a robot/vehicle travels, we extract a sequence of heading-length values for straight segments from the trajectory and match the sequence with a pre-processed heading-length graph (HLG) abstracted from the prior known map to localize the robot under a graph-matching approach. Using the information from HLG, our location alignment and verification module compensates for trajectory drift, wheel slip, or tire inflation level. We have implemented our algorithm and tested it in both simulated and physical experiments. The algorithm runs successfully in finding robot location continuously and achieves localization accurate at the level that the prior map allows (less than 10m).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源