论文标题

在受约束的客户服务拓扑上平衡平衡

Parallel Load Balancing on Constrained Client-Server Topologies

论文作者

Clementi, Andrea, Natale, Emanuele, Ziccardi, Isabella

论文摘要

我们研究了定义如下的客户端服务器分布式模型的并行\ emph {负载平衡}协议。 有一个$ n $客户端的$ \ sc $和一个$ \ ss $的$ n $服务器 (最多)必须将必须分配给某些服务器的常数$ d \ geq 1 $。客户端集和服务器一通过固定的双方图相互连接:客户端$ v $的请求只能发送给其附近$ n(v)$的服务器。目标是分配每个客户端请求,以最大程度地减少服务器的最大负载。 在这种情况下,有效的并行协议仅适用于密集的托架。特别地,对于常规密集的两部分图,Becchetti等人\ cite {Bcnpt18}最近引入了一种简单的对称,非自适应方案,该方案实现了恒定的最大载荷。并行完成时间为$ \ bigo(\ log n)$,整体工作为$ \ bigo(n)$,w.h.p.。 我们在某些客户端服务器系统中产生的接近度约束的动机,我们设计了Becchetti等人协议的简单变体\ cite {bcnpt18},并在节点可能具有小尺寸的邻域的几乎规范的两部分图上进行了分析。详细说明,我们证明,W.H.P.,此新版本的成本相当于Becchetti等人的协议(分别在最大负载,完成时间和工作复杂性方面),每次$ω(\ log log^2n)$上的每个几乎规范的两部分图。 对于原始协议,我们的分析与\ cite {bcnpt18}中的分析显着背道而驰,并且需要在算法过程的随机选择上应对非平凡的随机依赖性问题,这是由于底层图的最坏情况,最差的,最差的,稀疏的拓扑。

We study parallel \emph{Load Balancing} protocols for a client-server distributed model defined as follows. There is a set $\sC$ of $n$ clients and a set $\sS$ of $n$ servers where each client has (at most) a constant number $d \geq 1$ of requests that must be assigned to some server. The client set and the server one are connected to each other via a fixed bipartite graph: the requests of client $v$ can only be sent to the servers in its neighborhood $N(v)$. The goal is to assign every client request so as to minimize the maximum load of the servers. In this setting, efficient parallel protocols are available only for dense topolgies. In particular, a simple symmetric, non-adaptive protocol achieving constant maximum load has been recently introduced by Becchetti et al \cite{BCNPT18} for regular dense bipartite graphs. The parallel completion time is $\bigO(\log n)$ and the overall work is $\bigO(n)$, w.h.p. Motivated by proximity constraints arising in some client-server systems, we devise a simple variant of Becchetti et al's protocol \cite{BCNPT18} and we analyse it over almost-regular bipartite graphs where nodes may have neighborhoods of small size. In detail, we prove that, w.h.p., this new version has a cost equivalent to that of Becchetti et al's protocol (in terms of maximum load, completion time, and work complexity, respectively) on every almost-regular bipartite graph with degree $Ω(\log^2n)$. Our analysis significantly departs from that in \cite{BCNPT18} for the original protocol and requires to cope with non-trivial stochastic-dependence issues on the random choices of the algorithmic process which are due to the worst-case, sparse topology of the underlying graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源