论文标题
OmnisPrædictio:用中风手势估算人类表现的全部范围
Omnis Prædictio: Estimating the Full Spectrum of Human Performance with Stroke Gestures
论文作者
论文摘要
为图形用户界面设计有效,可用且广泛采用的中风手势命令是一项艰巨的任务,传统上涉及多个迭代的原型,实施,后续用户研究以及用于评估,验证和验证的对照实验。另一种方法是采用人类绩效的理论模型,该模型可以从用户界面设计的最早阶段提供具有深刻信息的从业者。然而,到目前为止,已经对人类绩效的大量人类表现很少有很少的方面进行了研究,从而使研究人员和基于手势的用户界面设计的研究人员和从业人员具有非常狭窄的可预测衡量人类绩效的范围,其中大多数集中在估计生产时间上,其中很少有非常伴随的软件工具用于辅助模型。我们通过引入“ OMNIS PRAEDICTIO”(简称Omnis)来解决此问题,这是一种通用技术和伴随Web工具,可提供对任何数值中风手势功能的准确依赖用户独立的估计,包括代码中指定的自定义功能。我们对三个公共数据集的实验结果表明,我们的模型估计平均r> .9与地面图数据相关。 Omnis还使研究人员和从业人员在许多层面上以中风手势来理解人类表现,因此,为中风手势输入的人类绩效模型和估算技术提高了标准。
Designing effective, usable, and widely adoptable stroke gesture commands for graphical user interfaces is a challenging task that traditionally involves multiple iterative rounds of prototyping, implementation, and follow-up user studies and controlled experiments for evaluation, verification, and validation. An alternative approach is to employ theoretical models of human performance, which can deliver practitioners with insightful information right from the earliest stages of user interface design. However, very few aspects of the large spectrum of human performance with stroke gesture input have been investigated and modeled so far, leaving researchers and practitioners of gesture-based user interface design with a very narrow range of predictable measures of human performance, mostly focused on estimating production time, of which extremely few cases delivered accompanying software tools to assist modeling. We address this problem by introducing "Omnis Praedictio" (Omnis for short), a generic technique and companion web tool that provides accurate user-independent estimations of any numerical stroke gesture feature, including custom features specified in code. Our experimental results on three public datasets show that our model estimations correlate on average r > .9 with groundtruth data. Omnis also enables researchers and practitioners to understand human performance with stroke gestures on many levels and, consequently, raises the bar for human performance models and estimation techniques for stroke gesture input.