论文标题
一致近似与完整可压缩欧拉系统的限制的极限
Limit of a consistent approximation to the complete compressible Euler System
论文作者
论文摘要
本文的目的是证明,如果在完整空间中可压缩完整的Euler系统的一致近似方案的弱极限$ \ mathbb {r}^d,\; d = 2,3 $是系统的弱解,然后最终在最小的假设下,在近似溶液的初始数据的最低限度假设下,近似解决方案在适当的规范中强烈收敛。一致的近似解决方案类别非常笼统,包括消失的粘度和热电导率极限。特别是,它们可能无法满足熵的最低原则。
The goal of the present paper is to prove that if a weak limit of a consistent approximation scheme of compressible complete Euler system in the full space $ \mathbb{R}^d,\; d=2,3 $ is a weak solution of the system then eventually the approximate solutions converge strongly in suitable norms locally under a minimal assumption on the initial data of the approximate solutions. The class of consistent approximate solutions is quite general including the vanishing viscosity and heat conductivity limit. In particular, they may not satisfy the minimal principle for entropy.