论文标题
二维非炎症系统中的拓扑安德森绝缘子
Topological Anderson insulators in two-dimensional non-Hermitian disordered systems
论文作者
论文摘要
拓扑,混乱和非热性之间的相互作用可以引起一些外来的拓扑和定位现象。在这里,我们在具有两种典型类型的非热性跳动和现场增益和损坏效应的二维非疾病混合物模型中研究了这种相互作用。拓扑相图是通过数值计算真实空间中的两个拓扑不变式来获得的,这些空间分别是无序平均的开放式Chern数和广义BOTT指数。我们透露,在两种非热质性下,都可以存在着拓扑区域和拓扑区域的拓扑区域和拓扑区域的拓扑区域和拓扑区域。此外,我们通过使用逆参与比和单个颗粒密度分布的扩展来研究系统在拓扑非平地和琐碎区域中的定位特性。
The interplay among topology, disorder, and non-Hermiticity can induce some exotic topological and localization phenomena. Here we investigate this interplay in a two-dimensional non-Hermitian disordered Chern-insulator model with two typical kinds of non-Hermiticities, the nonreciprocal hopping and on-site gain-and-loss effects. The topological phase diagrams are obtained by numerically calculating two topological invariants in the real space, which are the disorder-averaged open-bulk Chern number and the generalized Bott index, respectively. We reveal that the nonreciprocal hopping (the gain-and-loss effect) can enlarge (reduce) the topological regions and the topological Anderson insulators induced by disorders can exist under both kinds of non-Hermiticities. Furthermore, we study the localization properties of the system in the topologically nontrivial and trivial regions by using the inverse participation ratio and the expansion of single particle density distribution.