论文标题
在大型MIMO中进行健壮的预编码:一种深度学习的方法
Robust Precoding in Massive MIMO: A Deep Learning Approach
论文作者
论文摘要
在本文中,我们考虑在基站(BS)的大规模多输入 - 多输出(MIMO)通信系统,具有均匀的平面阵列(UPA),并使用不完美的通道状态信息(CSI)调查了下行链路预编码。通过利用瞬时和统计CSI,我们旨在设计预编码矢量,以最大化沿偏g的速率(例如,总和,最低率等)受到总发射功率约束的约束。为了最大程度地提高沿阵行速率的上限,我们利用相应的拉格朗日公式,并确定最佳预编码器的结构特征作为通用特征值问题的解决方案。因此,高维的预编码器设计问题变成了低维功率控制问题。 Lagrange乘数在确定预编码器方向和功率参数方面起着至关重要的作用,但要直接解决的具有挑战性。为了弄清Lagrange乘数,我们开发了一个由正确设计的神经网络的基础的一般框架,该框架直接从CSI中学习。为了进一步减轻计算负担,我们通过将原始问题分解为分别处理的瞬时和统计CSI来获得一个低复杂的框架。借助离线预处理的神经网络,与现有的迭代算法相比,预编码的在线计算复杂性大大降低,同时保持几乎相同的性能。
In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoding with imperfect channel state information (CSI). By exploiting both instantaneous and statistical CSI, we aim to design precoding vectors to maximize the ergodic rate (e.g., sum rate, minimum rate and etc.) subject to a total transmit power constraint. To maximize an upper bound of the ergodic rate, we leverage the corresponding Lagrangian formulation and identify the structural characteristics of the optimal precoder as the solution to a generalized eigenvalue problem. As such, the high-dimensional precoder design problem turns into a low-dimensional power control problem. The Lagrange multipliers play a crucial role in determining both precoder directions and power parameters, yet are challenging to be solved directly. To figure out the Lagrange multipliers, we develop a general framework underpinned by a properly designed neural network that learns directly from CSI. To further relieve the computational burden, we obtain a low-complexity framework by decomposing the original problem into computationally efficient subproblems with instantaneous and statistical CSI handled separately. With the off-line pretrained neural network, the online computational complexity of precoding is substantially reduced compared with the existing iterative algorithm while maintaining nearly the same performance.