论文标题
在不确定性和时间约束下的动态多机器人任务分配
Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal Constraints
论文作者
论文摘要
我们考虑将任务动态分配给在时间窗口约束和任务完成不确定性下的问题的问题。我们的目标是最大程度地减少操作范围末尾的失败任务的数量。我们提出了一种多机器人分配算法,该算法在不确定性和多机构协调下取消了顺序决策的关键计算挑战,并以层次结构方式解决了它们。下层使用树木搜索使用动态编程计算单个代理的策略,并且上层解决了单个计划中的冲突,以获得有效的多代理分配。我们的算法,基于随机冲突的分配(SCOBA),在预期方面是最佳的,并且在某些合理的假设下是完整的。实际上,Scoba在计算上足够有效,可以在线交流计划和执行。按照成功完成任务完成的指标,Scoba始终优于许多基线方法,并以完整的LookAhead对Oracle表现出强大的竞争性能。它还可以按任务和代理的数量来很好地扩展。我们在两个不同的域上验证了各种模拟的结果:多臂传送带采摘和多个无人机送货在城市中。
We consider the problem of dynamically allocating tasks to multiple agents under time window constraints and task completion uncertainty. Our objective is to minimize the number of unsuccessful tasks at the end of the operation horizon. We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination and addresses them in a hierarchical manner. The lower layer computes policies for individual agents using dynamic programming with tree search, and the upper layer resolves conflicts in individual plans to obtain a valid multi-agent allocation. Our algorithm, Stochastic Conflict-Based Allocation (SCoBA), is optimal in expectation and complete under some reasonable assumptions. In practice, SCoBA is computationally efficient enough to interleave planning and execution online. On the metric of successful task completion, SCoBA consistently outperforms a number of baseline methods and shows strong competitive performance against an oracle with complete lookahead. It also scales well with the number of tasks and agents. We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.