论文标题

基于国家估计的互动人类社会中流感流行病的强大最佳控制

State Estimation-Based Robust Optimal Control of Influenza Epidemics in an Interactive Human Society

论文作者

Azimi, Vahid, Sharifi, Mojtaba, Fakoorian, Seyed, Nguyen, Thang Tien, Van Huynh, Van

论文摘要

本文在互动人类社会中,在建模不确定性的情况下,基于州估计的鲁棒性最佳控制策略为互动人类社会中。互动社会受到其他人类社会的随机进入的影响,这些人可以将其效果模仿为非高斯噪音。由于只能测量暴露和感染的人的数量,因此首先,由延长的最大Correntropy Kalman滤波器(EMCKF)估算流感流行病的状态,以在存在非高斯噪声的情况下提供强大的状态估计。然后合成一个在线二次计划(QP)优化,但要受到强大的控制Lyapunov功能(RCLF),以最大程度地减少易感和感染的人,同时最大程度地减少和限制疫苗接种和抗病毒治疗的速度。联合QP-RCLF-EMCKF符合多个设计规范,例如状态估计,跟踪,指挥控制最佳性以及对参数不确定性和状态估计误差的鲁棒性,而在先前的研究中尚未同时达到。使用Lyapunov稳定性参数可以保证误差轨迹的均匀最终界限(UUB)/收敛性。拟议方法的健全性在互动人类社会的流感流行病上得到了验证。仿真结果表明QP-RCLF-EMCKF达到了适当的跟踪和状态估计绩效。在存在建模误差和非高斯噪声的情况下,最终说明了所提出的控制器的鲁棒性。

This paper presents a state estimation-based robust optimal control strategy for influenza epidemics in an interactive human society in the presence of modeling uncertainties. Interactive society is influenced by the random entrance of individuals from other human societies whose effects can be modeled as a non-Gaussian noise. Since only the number of exposed and infected humans can be measured, states of the influenza epidemics are first estimated by an extended maximum correntropy Kalman filter (EMCKF) to provide a robust state estimation in the presence of the non-Gaussian noise. An online quadratic program (QP) optimization is then synthesized subject to a robust control Lyapunov function (RCLF) to minimize susceptible and infected humans, while minimizing and bounding the rates of vaccination and antiviral treatment. The joint QP-RCLF-EMCKF meets multiple design specifications such as state estimation, tracking, pointwise control optimality, and robustness to parameter uncertainty and state estimation errors that have not been achieved simultaneously in previous studies. The uniform ultimate boundedness (UUB)/convergence of error trajectories is guaranteed using a Lyapunov stability argument. The soundness of the proposed approach is validated on the influenza epidemics of an interactive human society with a population of 16000. Simulation results show that the QP-RCLF-EMCKF achieves appropriate tracking and state estimation performance. The robustness of the proposed controller is finally illustrated in the presence of modeling error and non-Gaussian noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源