论文标题
稀疏实验数据的生物信息神经网络指南机械建模
Biologically-informed neural networks guide mechanistic modeling from sparse experimental data
论文作者
论文摘要
引入并使用了生物知识的神经网络(BINNS),即物理知识神经网络的扩展[1] [1],以从稀疏的实验数据中发现生物系统的潜在动态。在目前的工作中,在监督的学习框架中对BINN进行了培训,以近似体外细胞生物学测定实验,同时尊重统治反应 - 扩散部分微分方程(PDE)的广义形式。通过允许扩散和反应项为多层感知器(MLP),可以同时融合到管理PDE的解决方案的同时学习这些术语的非线性形式。此外,训练有素的MLP用于指导PDE术语的生物学上可解释的机械形式的选择,该形式为控制观察到系统动力学的生物学和物理机制提供了新的见解。该方法对来自伤口愈合测定法的稀疏现实世界数据进行评估,其初始细胞密度变化[2]。
Biologically-informed neural networks (BINNs), an extension of physics-informed neural networks [1], are introduced and used to discover the underlying dynamics of biological systems from sparse experimental data. In the present work, BINNs are trained in a supervised learning framework to approximate in vitro cell biology assay experiments while respecting a generalized form of the governing reaction-diffusion partial differential equation (PDE). By allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear forms of these terms can be learned while simultaneously converging to the solution of the governing PDE. Further, the trained MLPs are used to guide the selection of biologically interpretable mechanistic forms of the PDE terms which provides new insights into the biological and physical mechanisms that govern the dynamics of the observed system. The method is evaluated on sparse real-world data from wound healing assays with varying initial cell densities [2].